Calreticulin Regulates Neointima Formation and Collagen Deposition following Carotid Artery Ligation.
نویسندگان
چکیده
BACKGROUND/AIMS The endoplasmic reticulum (ER) stress protein, calreticulin (CRT), is required for the production of TGF-β-stimulated extracellular matrix (ECM) by fibroblasts. Since TGF-β regulates vascular fibroproliferative responses and collagen deposition, we investigated the effects of CRT knockdown on vascular smooth-muscle cell (VSMC) fibroproliferative responses and collagen deposition. METHODS Using a carotid artery ligation model of vascular injury, Cre-recombinase-IRES-GFP plasmid was delivered with microbubbles (MB) to CRT-floxed mice using ultrasound (US) to specifically reduce CRT expression in the carotid artery. RESULTS In vitro, Cre-recombinase-mediated CRT knockdown in isolated, floxed VSMCs decreased the CRT transcript and protein, and attenuated the induction of collagen I protein in response to TGF-β. TGF-β stimulation of collagen I was partly blocked by the NFAT inhibitor 11R-VIVIT. Following carotid artery ligation, CRT staining was upregulated with enhanced expression in the neointima 14-21 days after injury. Furthermore, Cre-recombinase-IRES-GFP plasmid delivered by targeted US reduced CRT expression in the neointima of CRT-floxed mice and led to a significant reduction in neointima formation and collagen deposition. The neointimal cell number was also reduced in mice, with a local, tissue-specific knockdown of CRT. CONCLUSIONS This work establishes a novel role for CRT in mediating VSMC responses to injury through the regulation of collagen deposition and neointima formation.
منابع مشابه
Intrauterine growth restriction promotes vascular remodelling following carotid artery ligation in rats.
Epidemiological studies revealed an association between IUGR (intrauterine growth restriction) and an increased risk of developing CVDs (cardiovascular diseases), such as atherosclerosis or hypertension, in later life. Whether or not IUGR contributes to the development of atherosclerotic lesions, however, is unclear. We tested the hypothesis that IUGR aggravates experimentally induced vascular ...
متن کاملIntegrative Physiology/Experimental Medicine Smooth Muscle Cell Apoptosis Promotes Vessel Remodeling and Repair via Activation of Cell Migration, Proliferation, and Collagen Synthesis
Objective—Although vascular smooth muscle cell (VSMC) apoptosis occurs after vessel injury and during remodeling, the direct role of VSMC death in determining final vessel structure is unclear. We sought to determine the role of VSMC apoptosis in vessel remodeling, medial repair, and neointima formation and to identify the mediators involved. Methods and Results—The left common carotid artery w...
متن کاملVanin-1 Pantetheinase Drives Smooth Muscle Cell Activation in Post-Arterial Injury Neointimal Hyperplasia
The pantetheinase vanin-1 generates cysteamine, which inhibits reduced glutathione (GSH) synthesis. Vanin-1 promotes inflammation and tissue injury partly by inducing oxidative stress, and partly by peroxisome proliferator-activated receptor gamma (PPARγ) expression. Vascular smooth muscle cells (SMCs) contribute to neointimal hyperplasia in response to injury, by multiple mechanisms including ...
متن کاملSmooth muscle cell apoptosis promotes vessel remodeling and repair via activation of cell migration, proliferation, and collagen synthesis.
OBJECTIVE Although vascular smooth muscle cell (VSMC) apoptosis occurs after vessel injury and during remodeling, the direct role of VSMC death in determining final vessel structure is unclear. We sought to determine the role of VSMC apoptosis in vessel remodeling, medial repair, and neointima formation and to identify the mediators involved. METHODS AND RESULTS The left common carotid artery...
متن کاملCthrc1 is a novel inhibitor of transforming growth factor-beta signaling and neointimal lesion formation.
We identified collagen triple helix repeat containing-1 (Cthrc1) as a novel gene expressed in the adventitia and neointima on arterial injury and found that it functionally increases cell migration while reducing collagen deposition. To address the in vivo role of Cthrc1, we generated transgenic mouse lines that constitutively overexpress Cthrc1. An intercross of 2 transgenic lines produced off...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of vascular research
دوره 52 5 شماره
صفحات -
تاریخ انتشار 2015